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Introduction

We are developing a method using Generalized Tikhonov 

Regularization (GTR) and Support Vector Machines (SVM) 

for seamlessly fusing a-priori models and multi-dimensional 

observable data from Earth Science problems.



Introduction

The accurate and efficient formation of multi-dimensional 

functions from observable data is of considerable importance 

in engineering and has a number of immediate applications 

which include:

• Data acquisition 

• Classification

• Controls

• Image recognition



Introduction

This is the promise of artificial neural networks (ANNs) as 

applied to engineering

However, the approximation of a function          by a general 

weighted series of bases          is an ill-posed problem. 
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Introduction

Say our desired approximation minimizes the following  

objective function,  

where 

Specifically, there are an infinite combination of parameters 

in           that can work and minute perturbations to the input

or output,   , can result in large changes in the approximation.

1

2
F

e
( x k ) − f

a
( x k )( )2

k

S

∑ = F
e
− f

a 2

2

F
e
( x ) = F ( x ) +µ( x )

f
a
(x )

µ



Introduction

This ill-posed problem explains why ANNs can have trouble

converging even after one has settled on 

• The architecture

• The number of hidden layers

• The type of transfer function

• The number of nodes



Approach / GTR

A combined remedy is to constrain the parameters and 

transfer functions to form well-behaved basis functions, e.g., 

and to apply regularization. The most common and well-

known form is that of Tikhonov regularization,

where     is the vector form of the a-priori function,     is the 

regularization parameter and      is either the identity matrix 

or a discrete approximation of a linear derivative operator. 
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Approach / GTR

In our Generalized Tikhonov regularization (GTR) we are not 

limited to the L2 norm and we can utilize nonlinear differential

operators         in energy form, 

In our approach to GTR, we keep the L2 norm and directly solve the 

optimization problem for             , i.e. 

and where                  is the Green’s function (GF) for the differential 

operator 

min
1

2
Fe − f a Y

2
+ 1

2
λΛ f a , g( ) 

 
 

 
 
 

L [ ]

f a (x )

f a (x ) = g( x ) + G x , x i( )
i

∑ ci   where  c = G +λI[ ]−1
Fe − g( )

G x , x i( )
L [ ] .



Approach / GTR

The positive scalar      is such that                           , which satisfies

our original GTR objective function. 

However, the true optimal      is 

and since        is positive definite then as               

and as     
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Approach / GTR

To summarize, with the GTR formulation:

§ is the a-priori information and can be which can be a physics
based numerical model, analytical solution, statistical correlation, 

other empirical data, or even other intelligent system models
(ANNs,  Fuzzy-Neural Networks, etc. ).

§ is the Green’s function for the differential 

operator                

§ can range from               and is dependent on          

and 
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Approach / GTR

In our application of GTR to ES and engineering, we make 

use of a variant of the SVM to finally form well-behaved bases. 

This SVM variant minimizes the length of the vector     and 

implicitly solves for by satisfying the user criteria, 

The SVM operates from
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Approach / Our SVM Algorithm

Our SVM solution for    borrows from  previous work on 

"mesh-free" finite elements.

Minimize                                                     for basis parameters.

Solve                             and update                    , where 

and                                       .
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Approach / Our SVM Algorithm

This relatively painless approach

• Minimizes the length of    like conventional SVM training.

• Requires only one user-determined parameter .
• Avoids matrix manipulation.

• Requires only the storage of the sample vectors     and residual
vector .

• Input vectors don't have to be normalized.
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Approach / GTR with SVM
Levels of GTR applied to ES and engineering:

1. ‘I haven’t a clue.’ Set           to zero and                 to an 

infinitely differentiable function. 

2. ‘I think I know at least how       behaves wrt to at least 

one of the variables’, e.g. time and the diffusion equation. 

Set                   and                  to the GF of the low fidelity 

solution. 

3. ‘I know what’s going on but need to tune the model.’ Use 

and the GF for the model. 
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Applications of GTR with SVM 

• Regression / Identification in an Earth Science Problem 
(Level 2)

• Regression / Identification in a Rotorcraft Health 
Monitoring System (Level 2)

• Prediction in a Rotorcraft Health Monitoring System   
(Level 2)

• Classification / Identification of Naval Rotorcraft Launch 
and Recovery (Level 1)

• Classification / Identification in a Transonic Cavity Flow 
Experiment (Level 1)



Regression / Identification in an 
Earth Science Problem

• Inputs
∆ Salinity – 1 location
∆ Stage – 8 locations
∆ Flow – 6 locations
∆ Bias – Moon phase 

illumination
• Outputs

∆ Salinity – 1 location at 
next time step

• Data set ( 1 Hr. interval)
∆ Training data set – 1995-

1997
∆ Prediction data set –

1997-1998



Regression / Identification in an 
Earth Science Problem

Our SVM model was trained using: 

• 1000 sample points

• 16 inputs

• 1 output (water salinity)

• = 200

Can we use an SVM model with Level 2 GTR/SVM to identify 

dependence in this spatial time-series problem?

τ



Regression / Identification in an 
Earth Science Problem

SVM model of the salinity measured  at  the testing station. 1000 sample points
#SV = 839



SVM Input Components

1.    chgr1009-stage
2.    flow-cfs-rsan112  (4)
3.    stage-ft-rsan112
4.    stage-feet-rsan007
5.    rcsm075-flow-cfs  (6)
6.    rcsm075-stage-feet 
7.    flow-cfs-rsac155  (2)
8.    stage-feet-rsac155 

9.    stage-feet-rsac101 
10.  slmzu011-stage 
11.  chc006 
12.  shwf001-stage  (5)
13.  chdmc00  (7)
14.  chswp003  (3)
15.  Moon Illumination
16.  EC-rsac054 (1)



Conclusions / Future Work

The approach shows some promise. Further investigation 

of the method and the applications are required: 

• Investigate the physical reasoning behind the sensitivity 
plots from the applications presented.

• Make the techniques more efficient for large numbers of 
input samples.

• Use more sophisticated optimization routines.

• Investigate other types of bases.


